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I 

OF SLENDER CONICAL BODIES  WITH STRAKES 

AT LOW SPEEDS 

By E. S. Levinsky  and M. H. Y. Wei 
Air  Vehicle  Corporation 

SUMMARY 

Nonlinear  vortex l i f t  and  pressure  distributions  were  obtained  analyti- 
cally  for  conical  bodies of circular  and  elliptical  cross-section  with small 
span  sharp-edged  conical  wings  or  strakes of arbitrary  dihedral  angle.  The 
analytical  approach,  which is  an  extension of the  Mangler  and  Smith  theory 
for  slender flat triangular  wings,  made  use of a generalized  conformal  trans- 

a vertical slit. A single  pair of spiral  vortex  sheets  was  assumed  to  originate 
from  the  leading  edge of each  strake.  The  shape  and  strength of the  spiral 
vortex  sheet  were  determined as par t  of the  calculation  procedure. 

' formation  to  map  this  class of wing-bodies of high  volumetric  efficiency  into 

The  nonlinear  theory  was  evaluated  by  comparing  with  low-speed wind 
tunnel  force  and  pressure  data  obtained on a ser ies  of related  models.  Both 
theory  and  experiment  indicated  relatively  large  increases  in l i f t  with  even  the 
smallest  strake  sizes  considered,  viz. , 10% of the body radius. Good corre-  

k lation  between  theory  and  experiment  was  obtained  over  the  complete  angle of 
' attack  range  for  cones with strakes of 5070 of the body radius  or  greater.  For 

these  configurations,  the l i f t  was  approximately  twice  the  linear  theory  value 
at angles of attack cy equal  to  twice  the  strake  semi-apex  angle 6. 
At Q/ 6 6, the l i f t  was  approximately  four  times  the  linear  value. 

For  cones  with 2570 and 10% strakes,  good correlation  between  theory 
and experiment  was found except  in  the  range 2 5 a/ 6 I 4. Both theory  and 
experiment  showed  that  the  nonlinear l i f t  was  relatively small for a/ 6 < 2. 
For  2 < Q/ 6 < 4, the wind tunnel l i f t  consistently  exceeded  the  theory.  The 
disagreement  was  believed  caused  by a second  pair of body vortices  not 
included  in  the  theoretical  model.  For a/ 6 > 4, the  theory  became  multi- 
valued,  with  the  extent of the  multivalued Q/ 6 region  increasing  with 
decreasing strake size  and  dihedral.  Reasonable  agreement  between the data 
and  the  upper  theoretical  solutions  was  obtained,  and  again  indicated  large l i f t  
increases  over  the  linear  theory. 



INTRODUCTION 

The  approach  and  horizontal  landing of reentry  vehicles  and  recover- 
able  boosters of high  volumetric  efficiency  are  compromised  by  their low 
values of l i f t  curve  slope  and  lift/drag  ratio.  This  has  led  to  the  considera- 
tion of deployable l i f t  aids,  e. g. , paragliders,  parachutes,  rotors,  etc.  to 
improve  the  overall  landing  characteristics.  The  purpose of the  present 
study i s to  calculate  the  improvement  in l if t  that c a n   b e  obtained  by  using 
small  conical  wings  or  strakes  with  sharp  leading  edges, which can  be  unfold- 
ed  from a conical body at  low speeds  (fig. 1). The  use of these  strakes  will 
increase  the  overall l i f t  because of the  increased  planform  area,  and 
because  the  sharp  leading  edges  will  cause  the flow to  separate on  the  upper 
surface  and  form two o r  more  spiral  vortex  systems  which  further  increase 
the  lift. 

Considerable  experimental  and  theoretical  research  has  been  carried 
out on the  nonlinear  vortex l i f t  of low aspect  ratio  wings  and  slender  bodies 
(refs. 1-12) .  Legendre  (ref. 1) treated  the  problem of a flat  triangular wing 
within  the  context of slender-body  potential  theory  by  assuming  that  the two 
spiral  vortex  sheets, which were  shed  from  the  leading  edges, could be  re- 
placed  by a pair  of concentrated  potential  vortices.  Legendre  satisfied  the 
Kutta  condition at  the  leading  edge,  as  well  as  the  usual  tangential flow bound- 
a ry  condition  over  the  wing,  but,  as  pointed  out  by  Adams  (ref. 2), failed  to 
account  properly  for  the  forces on the  feeding  vortex  sheet.  Brown  and 
Michael  (ref. 3 )  subsequently  introduced  the  zero  total  force  condition  on  the 
potential  vortices  and  feeding  sheet,  which  they  represented  as a cut  between 
the  vortex  and  leading  edge,  and  obtained  an  improved  solution fo r  the  non- 
linear l i f t .  Bryson  (ref. 4) extended  the  Brown  and  Michael  type of analysis 
to  slender  bodies of revolution  and  treated  both  conical  and  cylindrical  con- 
figurations.  Schindel  (ref. 5) extended  Bryson's  analysis  to  bodies of ellipti- 
cal  cross-section.  In  contr'ast  to  the  analyses  for  flat wings  with sharp 
leading  edges,  the  theories  for  slender  bodies  required  the  additional  specifi- 
cation of the  location on the body at which  the  vortex  sheet  originates.  This 
was  done  empirically.  Pershing  (ref. 6) considered  the  effect of secondary 
vortices  for  flat  triangular  wings.  Squire  (ref. 7) used  the  Brown  and 
Michael  model to analyze  conically  cambered  wings.  Jobe  (ref. 8) treated 
zero  thickness  pointed  wings of arbitrary  camber  and  planform. 

In  comparing  theory  with  experimental  data  (e. g. , refs. 3 and l o ) ,  it 
was found that  the  Brown  and  Michael  type  theories  (henceforth  designated 
BM theories)  gave  the  correct  overall  trend  for  the  variation of lift with 
angle of attack  and  also  provided a good estimate of the  overall  vortex 
strength.  However,  the BM theory  was  found to  predict a vortex  location 
which i s  too far  outboard,  and  consequently  significantly  overpredicted  the 
vortex l i f t .  An improved  theory  which  accounts for  the  distribution of vor- 
ticity  in  the  spiral  vortex  sheet  was  therefore  clearly  called  for. 

This  was  supplied  by  Mangler  and  Smith (ref. lo), who again  treated 
the  flat  triangular wing,  but  included a vortex  sheet  originating  at  the 
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leading  edge and ending a t  a cut  which  connected to  an  isolated  potential  vor- 
tex.  Mangler and Smith  formulated  the  additional  boundary  conditions  which 
must  be  satisfied  along  the  sheet  to  determine  its  strength  and  location,  viz. , 
the  continuity of pressure and normal  velocity  across  the  sheet. By including 

' ' these  additional  sheet  boundary  conditions,  an  improved  estimate of the  non- 
i linear l i f t  was  obtained.  In  order to  simplify  the  mathematics,  Mangler  and 

! Smith  assumed  that  the  shape of the  vortex  sheet  was a c i rcular   arc  of 
! approximately 160° in  the  transformed  plane,  in which the  trace of the wing 

is mapped  into a vertical  slit.  The  resulting  values  for  overall lift were  in  
much  better  agreement with test  data,  but  the  lateral  positions of the  isolated 
vortex  were still found to  be  too far outboard,  possibly  because of the  circu- 

! lar  sheet  constraint.  This  constraint was  subsequently  removed  by  Smith 
,' (ref. l l ) ,  who allowed  the  angular  extent of the  sheet t o  be arbi t rary and its I shape to  be  free.  Smith  broke up the  sheet  into a ser ies  of connecting 

: straight  line  segments  in  the  transformed  plane.  The  first  segment  was  con- 
! nected  to  the wing leading  edge,  whereas  the  last  segment  was  joined by a cut 
! '. t o  the  isolated  potential  vortex of unknown strength.  Smith  obtained  the 
: strength and  position of the  sheet  segments and of the  isolated  vortex  through 
' a complicated  iteration  procedure, and found excellent  agreement with test  

data for  a sheet of 14 segments and of an  angular  extent of 157O in  the  trans- 
formed  plane. 

!I 

An alternate  approach by Sacks,  et  al. , (ref. 12) for  wings  with  curved 
or  straight  leading  edges,  replaces  the  spiral  vortex  sheet with a discrete 
vortex  model.  Their  method  is  dependent upon a knowledge of the  vortex 
shedding rate ,  which must  be  determined  "semi-empirically"  in  order  to 
obtain  agreement with test   results.  

The  current  investigation  extends  the  numerical  procedure  established 
by  Smith  to  conical  bodies of circular and elliptical  cross-section with small- 
span  triangular wings o r  strakes  at  arbitrary  dihedral. A fundamental 
assumption  is  that only a single  pair of leading  edge  vortex  sheets  need be 
considered, and that  additional body vortices, i f  present,  have a negligible 
effect  on  the  overall l i f t .  The  basic  difference  between  the  current  method 
and that of Smith is   that  a more  general  conformal  transformation  is  used  to 
map  the wing-body cross-section  into a vertical  slit.  To  simplify  the  numeri- 
cal  work  as  much  as  possible, a minimal  number of sheet  segments (i. e. 
6 segments) is used f o r  a majority of the  calculations.  Because of the 
assumptions  inherent  in  the  nonlinear  theory, a supporting wind tunnel  test 
program  was  carried out  by NASA investigators  at  the  Ames  Research  Center. 

In  the  following  sections a review of the  Mangler  and  Smith  theory i s  
first given,  with  emphasis on the  modifications  introduced  by  the  more 
general  configurations.  Sample  calculations  are  presented which  include  the 
effects of several  geometric  parameters.  Finally,  the  theory is evaluated  by 
comparing with recently  obtained  test  results. 



NOTATION 

A 

a 

B 

b 

cL 
C 

P 
d 
j 

F 

i 

L 

1 

N 

n 

r 

S 

U 

V 

w 

body cross-sectional  area;   also,  a parameter 

vertical  half-dimension of elliptical  body;  also,  radius of 
circular body 

parameter 

horizontal  half-dimension of elliptical  body 

l i f t  coefficient  based  on  projected  planform  area 

pressure  coefficient 

distance  in  the  auxiliary  plane  from  the  isolated  vortex  to  the 
j'th  pivotal  point of the  vortex  sheet 

force  in  physical  cross-flow  plane 

normalized  vortex  strength 

l i f t  

matrix [ eq.  (14) ] 

force  normal  to  body  axis 

inward  normal  to  vortex  sheet  (in  physical  cross-flow  plane) 

polar  radius  in  physical  plane 

planform  reference  area,  also  conformal  mapping  plane 

component ( = V cos CY) of stream  velocity  along x 

free  stream  velocity 

complex  potential 

Cartesian  coordinates 

complex  variable ( =  y + i z)  in  physical  cross-flow  plane 

complex  variable (= yl' + i z ) in  auxiliary  cross-flow  plane 
.L * 
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CY 

P 
r 

E 

i rl 

'p 

9 
i 

angle of attack 

dihedral  angle;  also,  vortex  separation  angle  for cone only 

vortex  strength 

vortex  strength/unit  length along vortex  sheet  at  intermediate 
point 

semi-apex  angle of body-strake  configuration,  measured  in 
the  dihedral  plane;  also,  differential  operator 

a parameter defined  by  equation (9) 

angle  defined  by  equation (18) 

a parameter defined  by  equation (A2) 

angle  in  auxiliary  plane [ = arg ( Z  - z ) ] 

parameter [ eq. (16)] ; also, angle for  minimum  pressure 

a parameter defined  by  equation (A2) 

* * 

velocity  potential 

angle  between r and tangent  to  sheet 

defined by 9 = tan x -1 B 

air  density 

0- distance along vortex  sheet,  measured  from leading  edge of 
strake 

Subscripts: 

1 linear 

2 nonlinear 

C cut 

j index 

k index 

m mean  values 

n segment  number 
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s source 

U uncorrected 

V isolated  vortex 

Superscripts: 
- 

complex  conjugate 

* in  the  auxiliary  plane 

( l) ,  (2), (3) index fo r  initial  values 

THEORY 

Consider  the flow past a circular  or  elliptical  conical body  with sharp 
edged strakes with or without dihedral  at  angle of attack. It is  assumed  that a 
thin  spiral  vortex  sheet  emanates  from  each  strake  edge  because of leading 
edge  separation. No separation  is  assumed on the  leeward body surface. 

Using slender body theory,  the  two-dimensional  Laplace  equation  holds 
in  the  physical  cros  s-flow  plane Z (= y +  i z) for  the  velocity  potential a, i. e. , 

a + azz = 0 w 
The  coordinate  system  used  is shown in  figure 2. To satisfy  the  usual  tan- 
gential flow boundary  condition on the body and strakes,  it i s  convenient t o  
solve  the  potential  problem  in  an  auxiliary  plane Z" = Z* (Z) ,  in which the 
body  and strakes  are  collapsed  into a vertical  slit  along  the  y-axis (fig. 3) .  
For  the  case of a flat  plate  delta wing, the  transformation  is 

z" = z  - 1  ,2 2 

and was  used  by  Mangler and Smith. F o r  wing-body  combinations of arbi t rary 
dihedral  angle p ,  the  corresponding  transformation,  derived fo r  the  present 
study  through  use of an  auxiliary  S-plane  (see fig. 4), i s  

2 1 r 2 1/2 ? 2  2 Z* = " - - , I b [ Z  - ( b 2 - a S ]  - a Z - i ( b - a ) q - ]  - 5 ,  
?I. 

The  terms  are  explained  in Appendix A. 

Velocity  Potential 

Following  Smith  (ref. l l ) ,  the  vortex  sheet  in  the  transformed Z -plane 
* 

is  represented by a ser ies  of n straight  line  segments of normalized 
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strength g = - at the  pivotal  sheet  points Z (see fig. 
* 
j 

The j = 0 pivot is at the  point  that  corresponds  to  the  leading  edge, i. 
Z* = 0. The j = n pivotal  point is joined  through a cut  to a potential  vortex 
of normalized  strength gv = r v / U  tan 6 located at the  point Z$ = y$ t i zv . * 

3) .  

e. , 

The  complex  potential W( Z* ) is then 

n 

- i 41-r 1 gj (ej+l - O j - 1 )  I n  ( x - )  z + z  
j=1 

where 8; i s  the  angle  between  the  line  connecting Z1' and Z* and  the  line 
.lI 

V j y  
connecting Zv with  the  origin  (see  fig. 3) .  Note that eo = 0 and en, 1= On. 

Equation ( 3 )  is identical with the  corresponding  expression of Smith  (ref. l l ) ,  
except  for  the  addition of the  source  term W(Z*)s,  caused  by  the  expanding 
body  cross-sectional  area  (see Appendix A).  The first t e rm on the  right 
hand  side  gives  the  linear l i f t  by slender body theory.  The  second  term  on 
the  right  hand  side is  the  contribution  from  the two isolated  vortices, and 
the  summation  represents  the  contribution  from  the  vortex  sheet  segments. 

J * 

The unknowns in  equation ( 3 )  a r e  gv, Z:, gj, and Z[. with j = 1, 2 , .  . .n .  
The  total  number of unknowns i s  2n -t 2, and therefore a 1ke number of 
equations i s  required.  The  equations  are  supplied  by  the  boundary  conditions 
and the  zero  force Condition,  and a r e  reviewed  below. 

Boundary  Conditions 

Kutta  condition.  -The  Kutta  condition states  that a finite  flow  velocity 
must  exist at the  leading  edge  in  the  physical  plane.  In  the Z*- plane  the 
Kutta  condition  becomes 

Differentiation of equation (3) ,  and assuming  that  the  terms  in  the sum- 
mation  vary  linearly with 8 between j = 0 and 1, give 
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Equation (4) is  formally  identical  with  the flat wing result. The$ody and 
dihedral  effects  enter  only  through  the  transformation Z* = Z ( Z ) .  

Zero  force  condition.  -The  formulation of the  zero  force  condition on 
the  isolated  vortex  plus  cut  follows.  The  force Fv on  the  isolated  vortex is  

F = - i p T v A U  
V 

( 5 )  

where A U  i s  the  local  relative  velocity  between  the flow  and  the  vortex  in 
the  physical  cross-flow  plane,  namely, 

V 

The  force F on  the  cut  may  be  written 
C 

F = i p  U r v  ( Z v  - Zn)  tan 6 
C 

Combining  equations (5) - (7) with ( 3 )  gives  for  the  conjugate of the  total  force 

where A is  the  local  body  cross-sectional  area,  and 

The  zero  force  condition  as  given by  equation (8) depends  on  the body shape 
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through  the  transformation Z = Z (Z)  and through A. Note that E, which 
represents  the  velocity  contribution of the  vortex  itself  in  the  transformed 
plane,  less  its  velocity  contribution  in  the  physical  plane  multiplied  by 
dZ/dZ'; , is nonsingular.  Consecutive  application of L'Hospital's  rule  gives 

* :x 

2 
1 d2Z/dZ* 

dZ/dZ* 
E = - - -  

which i s   a l so  dependent upon body shape. 

P res su re  continuity  condition.-The  condition  that  the pressure   i s  con- 
tinuous  across  the  vortex  sheet  has  been shown in  reference 10 to  be 

where  the A operator  refers  to  the  difference  across  the  sheet  at  the  mid- 
, ,  point of the  j 'th  segment, (8  @ / a v ) m  i s  the  mean  velocity  along  the 
u j-1/2 

sheet  at  the  midpoint of the  j'th  segment and i s  defined  in  the following sec- 
tion, and the  remaining  symbols  are  as shown in  figure 2. Smith  expresses 

and the  sheet  strengths yj-1/2 at  the  intermediate  points  as 
n the  potential  jump A Qj-1/2 in te rms  of the  isolated  vortex  circulation rv 

0 
n n  

I where 

Using the  trapezoidal  rule  for  numerical  integration,  equation (12) may  be 
written  in  matrix  form  as 

The I matrix is triangular,  and  for  equal  angular  spacing  between 
pivotal  points (0 - 0 = A 8 = A 0) i s  of the  form j j-1 j 

9 



The y matrix i s  a column matrix of n-j  elements,  with  the  k’th  element 
evaluated  at  the  midpoint of the  k’th  sheet  segment  according  to  equation  (13). 

The  jump  in  tangential  velocity A (a a/ a “2 - 1/2 at the  intermediate 
points  can  be  expressed  in  terms of the  sheet s rengths yj-1/2 through 

Combining  equations ( l l ) ,  (14),  and  (15) g’ 1ve s 

where 

Xj -1 /2  = - [ dO/du[  r cos rp - ( a @ / a i ~ ) ~ / U  tan 61 
l j  - 1/2 

Equations  (16)  form a set  of n simultaneous  equations  in  the n unknowns 
Yj - .1./2 /gv. The  equations are  actually  nonlinear  because  the y’ s, gv, and 
the  isolated  vortex and  midpoint  coordinates  appear  in Xj-1/2 in a compli- 
cated way.  The gels a r e  obtained from  the yj- 1/2’s  by  linear  interpolation. 

Continuity of normal  velocity.-The  continuity  condition for  the  normal 
velocity  across  the  sheet  at  the  midpoint  positions  has  been shown  by  Mang- 
l e r  and Smith  to  be 

J 

where (a 9/ a n)j- 1/2 is  the  normal  velocity at the  midpoint of the  j’th  sheet 
segment.  In  order  to  satisfy  equation  (17),  each  sheet  segment  must  be 
rotated  through  an  angle qf-1/2 ( s e e  fig. 3),  where 

and where it has  been  assumed  that  sin q j-1/2 = llj-1/2 and cos rl j-1/2” 1. 

The  mean  velocity  along  the  sheet (a 9/ 8 IT) and normal  velocity 
”j - 1/2 

of the  sheet (a  9/an)j-1/2  may  be  expressed  in  terms of coordinates  in  the 
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transformed  plane.  Thus, we have 

I : .  4. 

(19)  * 
where u is  the  arc  length  along  the  sheet  in  the  transformed  plane, i. e. ,  * 
(du   / dd j -1 /2  = I dZ"/dZ I j - 1/20 The t e r m  (dW/dZ*) j -  1/2 i s  obtained  by 
differentiation of equation (3), and 

Both of the  derivatives on the  right hand side of the  above  equation  may  be 
evaluated  from  the  coordinates of the  vortex  sheet  in  the  transformed plane. 
Referring  to  figure 3,  numerical  evaluation yielcls 

The  angle cp i s  defined in  figure  1, and may  be  expressed  in  terms of the 
above  quantities, viz. 

where 
r .  - r .  

N 
J-1 

e - e  j j -1 

After  the q- 1 ~ ' s  have  been found f r o m  equations  (18)  the  sheet  shape 
must  be  changedxy  rotating  each  sheet  segment  through  the  angle  qj-1 2. 
This will change  the  polar  distances  dj  between  the  isolated  vortex a n i  the 
pivotal  points.  The new dj's  have  been shown  by Smith  (ref. 11) to  be 

d' = d. t Ad 
j J j ( 24) 

with 

d.  d. 2 + d.,l 2 - 2dj  dj-l  cos (e. - e m e l )  
Ad = - J  

j d j - 1  d  sin(€) - 8 j -  1 j j -1  "j 



Numerical  Procedure 

Equations (4), (8), (16),  and  (18) form  the  required  set of 2n -t 2 
equations,  and  were  solved  on  the CDC  3600 computer at the  University of 
California,  San Diego  by an  iteration  pr0cedure.l 

In  brief,  the  numerical  procedure  was to linearize  equations  (16)  by 
assuming  an initial vortex  sheet and isolated  vortex  (strengths and coordi- 
nates), and  to insert  these  assumed  values  into  the X. . Equations  (16) 
and (4) were  then  solved  for  the  sheet and isolated  vo4dL2strengths  by  itera- 
tion.  Next,  the  position of the  isolated  vortex  was  adjusted  until  equation(8) 
was  satisfied. An improved  numerical  procedure  for  accomplishing  this is  
described  below.  Finally,  the  sheet  shape  was  rotated  according to  equa- 
tion ( 18), and  the  new  transformed  coordinates of the  sheet  were  then found 
by  applying  equations  (24)  and  (25).  The  entire  procedure  was  repeated 
until  convergence  in  sheet  shape  and  strength  was  obtained. 

Zero  force  condition  iteration  procedure.-Smith  used  the  method of 
"steepest  descent" as an  iterative  procedure  to  satisfy  the  force  balance 
condition  on  the  isolated  vortex and cut.  However, it was found that  this 
method  at  best  converges  slowly,  because  the  contours of constant  unbal- 
anced  force  are  extremely  eccentric,  especially  for  the  configurations with 
small  strakes.  The follbwing iteration  procedure  due  to  Warner  (ref. 13) 
was  used  instead, t o  obtain m o r e  rapid  convergence. 

According  to  this  procedure,  the  net  resultant  force  on  the  isolated 
vortex and cut was first written  in  terms of its y and z components, 

where  (yv, z ) is the  assumed  location of the  isolated  vortex, and in  general 

6F # 6F # 0. Next,  denoting  the  values of the  isolated  vortex  position 

which  satisfy  the  zero  force  condition  [equation (8) ] by y and z and 

assuming  linearity, 

V 

Y 2 

V 
0 

v y  
0 

- 
yv - yv + (ay / a F  ) 6 F  + (8yv/aF ) 6 F  

0 V Y  Y Z 

z = z  + ( 8 2  / a F  ) 6 F  + ( C Z  / a F  ) 6 F  . v v  
0 

V Y Y V Z Z 

1 (k) J 
By taking  three  different  initial  values  (yv, 

matrix  form : 
zv) k = l ,  2, 3 we obtain  in 

'The FORTRAN I V  program  has  been  delivered to  Ames  Research  Center 
and  checked out  on the  Center's IBM 7094/7040  Direct-Coupled  System. 
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$ '  which represents six equations  for  the  six unknowns in  the  second  matrix. 
ii ' Only the two  unknowns y and z need  be  obtained.  The  computed  values 
j V 

0 
V 
0 

of yv  and z a r e  denoted a s  y(4)  and z ( ~ )  from which 6F(4) and 6 F Z  (4) 
0 

V 
0 

V V Y 
are  subsequently  obtained.  Then  the  poorest  previous  approximation, 

2 
i. measured by a quantity  like , is   replaced by the  values of 

Z 

superscript  four.  This  process  is  repeated  until  the  error  formed by 

[6F(4)2 Y t d F Z  (4)2] becomes  smaller  than  the  prescribed  tolerance. 

1i 
Initial  trial  solution.-Each  calculation  required a trial  solution, 

"guess", f r o m  which  the  iteration  procedure  was  initiated.  The  iteration 
procedure  was found t o  fail i f  the  initial  guess  was not reasonably  close 
to  the  final  solution.  In  order t o  minimize  running  time  on  the CDC 3600 
computer,  the  final output from one  calculation  was  automatically  inserted 
as  an  init ial   guess fo r  a subsequent  calculation.  It  was  thereby  possible to  
make a set of calculations  for  either a single  configuration  at  progressively 
increasing o r  decreasing  values of angles of attack, o r  a progressively 
changing  configuration  at a fixed  angle of attack,  with  only a single  initial 
guess. 

Lift  and Pressure  Distribution 

Both the l i f t  and  local  pressure  distribution  may  be  readily  calculated 
once  the  solution  for  the  vortex  sheet  has  been found. The  normal  force N 
is obtained  by  computing  the  flow of downward  momentum  through  an  infinite 
plane  normal  to  the body axis at  the  trailing  edge,  and  is 

N = - p U I I [ S - U t a n u  1 d y d z  

where A i s   the  body cross-sectional  area,  and  the  integration is carried 
out  along a closed  contour  surrounding  the  body  and  vortex  sheet. It i s  

13 



convenient to 
the Z -plane, * write L i n   t e r m s  of the  complex  potential W a s  evaluated  in 

L =  pUcoscrCfW-* dZ dZ*] - pA U 2 sincr 
dZ 

By the  theory of complex  functions,  the  radius of integration  may  be 
extended to infinity.  The  complex  potential W i s  given  by  equation  (3),  with 
the  sheet and isolated  vortex  coordinates  and  strengths  assumed known. The 
source  term  in W gives no direct  contribution to the lif t .  

Fo r  convenience,  the l i f t  will  be  divided  into  the  linear l i f t  L1,  and 

the  nonlinear l i f t  L2 due to the  isolated  vortex  and  sheet. The linear l i f t  i s  

Going to the  infinite  circle,  and  using  the wing-body transformation given 
in Appendix A, we have 

Applying the  theory of residues, 

L1 = TT p U2 [e: t b2]   s in  CY 

Equation (32) gives  the  linear l i f t  for  conical  wing-bodies of circular  or 
elliptical  cross-section of width 2b and of overall  length x = 1/ tan6.  The 
quantity 5, i s  dependent upon the wing dihedral  angle and relative body 

dimensions  [equation (A2) of Appendix A].   For  circular  bodies with zero 
dihedral, Eq. (32) reduces  to  the well-known theory  by  Spreiter (NACA 
TR 962). 

In   terms of l i f t  coefficient  based on the  projected  planform  area and 
free  stream  dynamic  pressure (C = 2 L1 /p V2 x cos p), we obtain 

L1 

1 
2 2 cos crtan 6 

(33) 

For  the  nonlinear l i f t ,  we expand the  logarithmic  terms  in  equa- 
tion  (3),  which a r i s e  f r o m  the  isolated  vortex  and  vortex  sheet,  for  large 

Z . Similarly,  by  the  theory of residues, we obtain 
* 

14 



C n 
t - 4  1 * "* + ZV) cos a + zx gj (ej+l - e )(Z. + z . )cos a cos-1 f3 

j-1 J J 1 
j=1 

(34) 

According  to  slender body theory  the  local  pressure  coefficient C i s  
, 7 approximated  by P 

2 @x 2 ad + a; 2 C = sin a - cos cy - cos CY 
P 2 u  U2 

where  in  terms of the  complex  potential W ( Z  ) 
* 

!i The  condition of conical flow requires 

(35) 

I(. It is noted  that  the  ratios  sin  @/tan 6 and  tan  ff/tan 6 occur  implicitly 
in  equations (33 )  through  (37).  For  simplicity  both  parameters  were  assumed 

4 identical  in  the  sample  calculations  to  be  discussed,  and  were  referred  to as 
'i a/&. This  is  a valid  approximation up to (Y ap  roaching 20°. In  comparing 
f with  the  experimental  data,  the  parameter  sin  aptan 6 was  used. 
! 9 
A 

Sample  Calculations 
I 

A number of computations  were  made on the CDC 3600 computer  by  the 
above  procedure.  The  majority of calculations  employed a six-segment  vor- 
tex  sheet  model,  which  was found to  give a satisfactory  prediction of the  total 
l i f t  and  isolated  vortex  position  (table I), and  yet  did  not  consume  an  unrea- 
sonable  amount of machine  time,  viz.,  approximately 10 seconds  for  each 
angle of attack.  The  computations  were  performed  for  the  body-strake  con- 
figurations  listed in table II. The  parameters  investigated  included  the  effects 
of body  shape  (body  height  to  width  ratio  a/b),  strake  dihedral  angle p, and 

strake  size upon the  overall l if t  coefficient  CL/cos  tan 6 and upon the 

position of the  isolated  vortex.  Typical  results  are  presented  in  fig- 
ures  5-7.  Additional  results  may  be found in  reference 14. 

2 2 

As  expected,  significant  increases  in l if t  beyond  linear  theory  values 
' were  calculated.  Figure  5(a)  shows  the  variation  in l i f t  with a/ 6 for a 

family of elliptical  cones  with  cross-sections  ranging  from  circular  (a/b = 1) 
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to a flat  plate  (a/b = 0), a l l  with zero  dihedral   strakes of exposed  semispan 
equal to  5 0 %  of the  semi  major  cone  axis (50% strakes).  The  results, which 
are  typical of all  calculations  made  for  cones with large  s t rakes  (50% or 
greater), show an  overall l i f t  approximately  twice  the  linear  theory  value  at 
e/ 6 = 2, and approximately  four  times  the  linear  value at cr/5 = 6. As 
shown, the  effect of body volume  (a/b)  was  relatively  small. 

The y  and z coordinates of the  isolated  vortex  are shown in fig- 
ure  5(b).  As anticipated,  the  isolated  vortex  is shown to  move  upward  and 
inboard  from  the  strake  tips  with  increasing  incidence  an le. A tendency 
for the  isolated  vortex to  turn  outboard with increasing CY 7 6 was found at  the 
larger a/ 6. However,  the  accuracy  in  the  calculation of vortex  position is 
reduced  at  the  higher a / 6 ,  because  the  contours yv versus z fo r  a fixed 
value of the  residual  force on the  vortex  and  cut  become  increasingly 
elongated  in  this  region. 

V 

Figures 6 and 7 show the  effect of strake  dihedral f o r  circular  bodies 
with 2570 and  10% strakes,  respectively. The l i f t  at  large a/ 6 was found to 
increase  progressively with decreasing  dihedral  angle  in  the  range 
+ l o o  5 I - 20°, the  configurations  with  largest  negative  dihedral showing 
the  largest  lift (figs. 6 and 7). Conversely,  at 1 o w  CY/ 6 a small  favorable 
effect of dihedral on l i f t  was  calculated.  Similar  trends  were  also  calcu- 
lated  for  cones with 5070 and larger  strakes.  

The  isolated  vortex  positions shown in  figures 6 and 7 indicate  that 
positive  dihedral  tends  to  move  the  vortex  position  inboard,  whereas  negative 
dihedral  moves it outboard  at  all  except  the  very  lowest  angles of attack. 
This  larger  outboard  vortex  displacement could  account for  the  increased 
lift with negative  dihedral  angle. 

At  intermediate a/ 6 the l i f t  is   seen t o  be  multivalued, with the  extent 
of the  multivalued  region  being  greatest  for  the  cones with the  smallest 
strakes  at  the  most  negative  dihedral  angles.  In  the  multivalued  region  the 
theoretical l i f t  has  three  different  values  at a given a/& corresponding  to 
three  distinct  theoretical  solutions. The  lowest  value  corresponds  to a solu- 
tion  with a  weak vortex  sheet  lying  close to  the  strake  leading  edge,  the 
highest  value  is a solution  with a strong  vortex  sheet with the  isolated  vortex 
located  approximately one  body radius  above  the  strake, and the  middle 
(transitional)  value  corresponds  to a solution of intermediate  nature. 

Special  calculation  procedures  were  required  to  obtain  the  three  differ- 
ent  values.  The  usual  calculation  procedure  was  to  begin  with a trial solution 
at  c ~ J 6  = 8 .  0, and to  obtain  the  entire l i f t  curve by successively  decreasing 
a / 6 ,  using  the  previous  solution as  an  init ial   tr ial   for  the next a / 6 .  In this 
manner,  solutions  were found automatically down to a/ 6 0. 3 ,  as lcng 
as  the l i f t  was  not  multivalued. If the l i f t  was  multivalued,  the  standard 
procedure  failed when L Y / ~  'was decreased below the  region for  the  upper 
values.  In  order to  obtain  the  lower  values, it was  necessary t o  begin  with 
an  initial  trial  solution at a  low a/ 6, say a/ 6 = 0. 30, and  then  successively 
increase a/ 6. A transitional  value  was found  by iterating upon a t r i a l  
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solution  at  an  intermediate CY/ 6 a s  obtained  from a single-valued  solution 
for  a larger  strake  size.  The  transitional  curve  was  then  generated  by 
successively  changing CY/ 6. Only a limited  number of calculations  were 
made  for  the  lower and transitional  values,  because of the  more  complicated 
computation  procedure  required. 

As a further  check on the  nature of the  multivalued  solutions,  calcu- 
lations  were  also  made  by  the  simplified  Brown  and  Michael  (BM)  method 
mentioned  previously  in  the  Introduction.  The BM theory  was  extended  to 
include  more  general wing-body  configurations, a s  outlined  in  Appendix B. 
It i s  noted  that  the  independent  parameter of the BM theory  is   taken  as  the 
vertical  position of the  isolated  vortex  above  the body axis zv,  and  not CY/ 6. 

The l i f t  from  the  extended BM theory  was found to  be  single-valued  for 
large  strake  sizes,  and  multivalued for  the  smaller  strakes,  and  generally 
followed  the same  trends  as  the  extended  Mangler  and  Smith  calculations. 
Because of the  relatively  simple  nature of the  calculations,  all  three  values 
of the l i f t  curve  were  readily  obtained  (figure 8). 

It is  recognized  that the prediction of a multivalued l i f t  curve  may  well 
be  the  result of several  simplifying  assumptions  in  the  theory, e. g. the 
neglect of a possible  second  pair of vortex  sheets  caused  by  boundary  layer 
separation on the body  and  the  neglect of regions of trapped flow,  such a s  
at  the  strake-cone  junction.  The  requirement  for  an  experimental  verification 
of the  theory is thereby  increased. A comparison  between  the  results of 
a test  program  and  the  theory  is  given  in  the following sections,  including  an 
assessment of the  physical  significance of the  multivalued l i f t  solutions. 

WIND TUNNEL  TESTS 

A supporting wind tunnel  program  was  carried out by NASA investiga- 
tors  in  the 7 x 10 ft .  low speed wind tunnel  at  the  Ames  Research  Center to  
provide  test  results  for  evaluating  the  nonlinear l i f t  theory. 

Model  Geometry 

The  models  consisted of a ser ies  of circular  and  elliptical  cones,  each 
of 4-foot  length.  The  circular  cones  were of semi-apex  angles 2 O ,  4 O ,  6 O ,  
8O, and loo .  Each  cone  could  be  fitted  with a ser ies  of strakes  with  exposed 
semispans of lo%,  2570, 50%, 7570, and 100% of the body radius.  The 4O 
circular  cone  and  the  corresponding lo%, 2 5 7 0 ~  and  75%  strakes  were  instru- 
mented  for  static  pressures  at a number of different  axial  stations  (see  fig. 9). 
The two elliptical  cones  were of l o o  maximum  semi-apex  angle  and  could  be 
fitted  with  the  same  strakes  as  the l o o  circular cone.  The ratios of the 
minor  to  major  axes  for  the  elliptical  cones  were  a/b = 0.6 and 0.75. The 
elliptical  cone-strake  model  with  a/b = 0.6 is shown installed on the  support 
strut  in  figure 10. 
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Test  Procedure  and  Conditions 

The  angle of attack of the  models  was  varied  from -8O to  approximately 
34O for  the majority of the  force  runs,  and  from -34O to 34O for  the  majority 
of the  pressure  tests.   The  force tests were  initially  carried out by  pitching 
the  model  in  the  vertical  plane.  However,  because of abnormally  large  tares 
believed  caused  by  strut  interference,  the  models  were  subsequently  rolled 
90° on  the  sting  mount  and  pitched  in  the  horizontal  plane. An 8-inch  sting 
extension  was  also  added  to  further  reduce  strut  interference.  The  pressure 
tests  were  pitched  in  the  horizontal  plane  with  the  extension  installed.  The 
tests  were  conducted at nominal  free-stream  dynamic  pressures of 50 and 
75 psf,  although  some  runs  with  the  smaller  strakes  were  made  at  dynamic 
pressures   as   high  as  100 psf. 

Data  Reduction and Corrections 

Six  component  force  and  moment  data  were  measured  with a mechanical 
scale  system. Only the l i f t  force  data  are  presented  for  comparison  with 
theory.  The  pressure  data  were  obtained  by  scaling  manometer  board  photo- 
graphs.  All  coefficients  are  based upon the  planform  reference  area 

S = 16  tan 6 f t  , where 6 is  the  strake  semi-apex  angle. 2 

No wind tunnel  wall  corrections  were  made  to  the  data.  Because of 
the  large  buoyancy  correction found in  pitch,  most of the  force  data  in  pitch 
were  rerun  in yaw. The  remaining  pitch  data  were  corrected  as  follows: 

a 5 24 0 

C L  = CL a 1 24O 
U 

a =CY 
U 

The  above  tare  was  obtained  by  comparing  data  from  tests  in  the  vertical  and 
horizontal  planes  for  several  identical  models,  and  was  most  pronounced  for 
models of smallest  span.  The  correction  was not believed  adequate  for  the 
cone of 2O semi-apex  angle,  and  these  data  are  therefore  omitted. 

EVALUATION O F  THE THEORY 

A theory  has  been  developed fo r  the  pressure  distribution and nonlinear 
l if t  of slender  conical  bodies  with  sharp  leading  edge  strakes. Among the 
principal  assumptions  in  the  theory  are  (1)  the  representation of the  complete 
leading  edge  spiral  vortex  sheet by a segmented  feeding  sheet of approxi- 
mately 1/ 2 turn,  together  with  an  isolated  potential  vortex at the  center; 
(2) the  neglect of possible  additional  vortices  caused  by  boundary  layer 
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separation; (3) the  neglect of regions of trapped flow, such as  at   the  strake- 
body  junction;  and, (4) the  neglect of vortex  breakdown  and  other  nonconical 
effects. 

Comparisons of the  theory with the wind tunnel l i f t  and pressure  data 
and  an  evaluation of the  theoretical  model follow. 

Force Data 

!! Circular  cones.-Comparisons of the  experimental and theoretical lift 
' are  presented  in  figures  11-16  for  circular  cones with strakes of exposed 

semispan  equal  to 6%, lo%, 2570, 50%, 75%, and 10070 of the body radius, 
respectively.  The wind tunnel  data  are  for  circular  cone  bodies  with  semi- 
apex  angles 6 of 4 O ,  6 O ,  8O, and loo. The  data  for  different  apex  angles  are 
normalized  in  terms of the  theoretical l i f t  and angle of attack  parameters - - 
CL/tan 6 cos o and sin  o/tan 6, respectively. L L 

3 s trakes of exposed  semispan  equal  to 50% of the body radius  or  larger  over 
"* nearly  the  entire  experimental  angle of attack  range (figs. 13 - 16).  Some 1 tendency  for  the  data  to  drop  below  the  theory  is  noted  at  the  highest  value of 

sin  @/tan 6 for  each  model,  and is attributed  to  the  occurrence of vortex 
breakdown. 

Excellent  agreement  between  theory  and  experiment  was found f o r  

i, 

The  comparison of the cone  only data with the  nonlinear  theory i s  given 
in  figure 11. In  this  case,  the  separation point  on the  model  is no longer 
fixed  by  a  strake.  The  nonlinear  theory  was  applied  by  setting  a = 1  (zero 
strake) and  allowing  the  separation  angle @ to  vary  parametrically. A 
spiral  vortex  sheet  was  calculated  emanating  from  the cone at the  indicated 

;' separation  angles. As seen  in  figure 11, p apparently  decreases  with 
j increasing  sin a/ tan 6. This  is  in  accordance with  flow visualization  obser- ?I vations  by  previous  investigators  (ref.  15).  It is also  apparent  from  figure 11 

that  the body vortices  have  a  negligible  influence on the  overall l i f t  when 
s ino/ tan 6 < 2, irrespective of the  actual  value of p.  This is in  agreement 
with the  previous  simplified  theory  for  cones  by  Bryson  (ref. 4) which does 
not include  the  effect of a  feeding  vortex  sheet. 

Both the 10%  and 2570 strake  data, f i  ures  12 and  13,  show good agree- 
ment  with  the  nonlinear  theory up to  sin  oftan 6 + 2 to  2.5.  In  the  range 
2.5 < sinru/tan 6 < 4 the wind tunnel  data  consistently  exceed  the  theoreti- 
cal  lift. Beyond s ina / tan  6 = 4 the  theory  becomes  multivalued, and the 
wind tunnel  data  follow  the  upper  theoretical  curve. It is apparent  that  the 
data  smoothly  join  the  so-called  upper  and  lower  branch  curves of the  theory, 
and that  the  transition is gradual  rather  than  abrupt. No experimental  evi- 
dence  for  multiple l i f t  values  was found. 

It appears  that  these  anomalies  can  be  explained  by  the  possible  exist- 
ence of a second  pair of body vortices  (figure  17).  Examination of the  theoret- 
ical  pressure  distributions on the body shows a region of adverse  pressure 
gradient  and  resulting  possible flow separation on the  leeward  surface at low 
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to  intermediate  sin  Q/tan 6. The  extent of this  region is shown in  figure 18 
fo r  cones  with lo%,  25%, and  75% strakes. It is noted  that  the  adverse  region 
decreases  rapidly with increasing  strake  size.  For  those  theoretical  solu- 
tions which a r e  multivalued  over a particular  sin  Q/tan 6 range,  the  adverse 
region is shown to  be  largest on the  lower  curve  and  nonexistent  along  the 

upper  branch  curve.  Thus when CL/ tan  6 cos CY i s  multivalued,  the  upper 

branch  solution  is  physically  acceptable  in  that no separation  and  accompany- 
ing  formation of body vortices  are  predicted.  The  lower and  middle  branch 
curves  are  physically  unacceptable,  because  these  solutions would lead  to  the 
formation of additional  body  vortices which a r e  not  included  in  the  assumed 
flow model.  It is  therefore  expected  that  the  data  should  agree  much  better 
with the  upper  branch  curve. 

2 2 

Below the  multivalued  region (i. e. , sin cr/tan 6 2 4), the  lower  branch 
curves  for  small  strake  sizes should  be  corrected f o r  the  influence of the body 
vortices. As discussed  previously  in  connection  with  the  cone  only  results  in 
figure 11, the body vortices  are  very weak  and have  only a negligible  effect on 
l i f t  fo r  sin  @/tan 6 5 2. That  this  is  true for  cones  with  small  strakes  as 
well  may  be  seen  from  the  close  correlation  between  the  theory and  data fo r  
sin  @/tan 6 2 in  figures 12 and 13. Thus,  as  summarized  in  figure 17, the 
body vortices  play a significant  role only  when 2 5 sin  a/tan 6 5 4. 

In  lieu of a complete  theory,  an  approximate  treatment  to  explore  the 
relative  magnitude of the  effects of body vortices  was  attempted.  The  theoret- 
ical  body vortex l i f t  increments  for  the  cone,  with p = 40°, were  added  to  the 
lower  branch  solutions.  The  results, shown in  figures 12 and  13, are   en-  
couraging.  It  appears  that  the  proper flow model  for  bodies  with  small 
strakes should  allow for  the  simultaneous  formation of body vortices  as  well 
as  strake  vortices  in  this  intermediate  angle of attack  range.  The  strength 
and position of these  vortices and their  feeding  sheets  could  be found  by 
simultaneously  satisfying  the  proper  boundary  conditions  across  the  vortex 
sheets  as  was done for  the  leading  edge  vortices.  However,  any  such  theory 
would be  dependent upon knowledge of the body separation  point, which must 
be  found  experimentally.  Until  such  data are  available,  the  approximation by 
super  position  can  be  considered. 

It i s  of practical  interest  that  the  addition  to  the cone of even  the  smaller 
10%  and 25% strakes  produced  relatively  large  increases  in l i f t  at 
sin  @/tan 6 2 2, as  summarized  in  figure 19. The  relative l i f t  increase due 
to  strakes  is  even larger  than  the  percent  gain shown in  the  parameter 

CL/cos  CY tan 6 because of the  larger  planform  area  and  semi-apex  angle 6 

with strakes.  Based on these  results,  the  use of small  deployable  strakes  in 
order  to  achieve  additional l i f t  and control on recoverable  booster  or  space- 
craft  configurations  appears to  warrant  consideration. 

2 2 

Elliptical cone.-A similar  comparison  between  theory and experiment 
f o r  the  elliptical  cone  (a/b = 0. 6 )  with lo%, 2570, and 5070 strakes is given in 
figures 20-22, respectively. Good agreement  is found for  the 25% and 50% 
strake  configurations  at  all  values of sin @/tan 6, whereas  the 1070 strake  data 

20 



exceed t h e  theoretical l i f t  at  intermediate  sin  a/tan 6. The  data fo r  the 
a /b  F 0.75 cone  showed similar  trends, with  the  role>of  the body vortices 
tending to  diminish with decreasing  a/b. 

Lift  data  for  the a /b  T 0. 6 cone  without strakes  are  compared with 
the  strake-on  data  in  figure 23, and  again show a sizable  favorable  effect 
with even  the  smallest  strakes. 

Pr e s sur  e  Data 

Pressure  data  were obtained on a single  circular cone of semi-apex 
angle 4O.  The strake  sizes  tested  were of exposed  semispan  equal  to lo%, 
2570, and 7570 of the body radius.  Measurements  were  made  at a number of 
different  axial  stations.  The  axial  variation of pressure  coefficient  at a con- 
stant  percent  span  was  generally  typical of that  presented  in  figure 24 and 
showed significant  nonconical  effects  near  the  base.  The  data  at  the 6370 

\. , station  were  compared with theory,  since  this  position  afforded a compromise 
between  the  adverse  nonconical  effects due to  the  base and the  relatively  thick 

locations. 
boundary  layer and the  limited  number of pressure  orifices  at  more  forward 

Although the  upper  surface  pressure  orifices  were  located  primarily on 
i the  port  side and the  lower  orifices  primarily on the  starboard  side of the 

1 

j ;a, 

model,  complete  spanwise  coverage  with 1070 and 2570 strakes  was  obtained by 
testing  at  positive  and  negative  incidence.  The  data  scatter  are  believed due $ t o  flow  and model  asymmetries and to  runs at different  dynamic  pressure. 

, Id. 

A comparison  between  experimental  and  theoretical  pressures f o r  the 

@ 
circular cone  without s t rakes   i s  given  in  figure 25. The  theory  without 
strakes  was  based on  a  body separation  angle p which varied with sin  a/tan 6, 

!: ii and  gave the  best  fit with the  force  data.  Also shown on figure 25 are   previ-  
'i ously  published  data f o r  a kOo semi-apex  angle cone (ref.  16).  The  asymrne- 

tries  in  the  data  from  reference 16 were  attributed  to  small  irregularities  in 
the  model,  and  increased  with  increasing  angle of attack. 

The  spanwise  pressure  data fo r  a  cone  with 1070 strakes  are  presented 
in  figure 26. At s ina / t an6  = 1.81,  reasonable  correspondence with the non- 
linear  theory  is  indicated. At sin a/ tan 6 = 3. 14, the  data show significantly 
lower  pressures on the  upper  cone  surface,  as  might  be  expected  from  the 
presence of additional body vortices.  The  pressures on the  lower  surface 
agree  well with theory fo r  these  cases. At s ina / tan  6 = 5.29, the  theory is 
based on the  upper  branch  solution.  The  large  scatter  in  the  pressure  data 
on the  upper body surface  makes  comparison with theory  difficult  for  this  con- 
dition. I t  was  observed  that  high  negative  pressure  peaks  appeared on either 
the  upper  right o r  left  side of the  model  at  this  condition.  Repeat  runs showed 
apparently  random  changes of this  phenomena  from  left  to  right  sides.  The 
cause of these  loading  asymmetries is now believed due to  model  irregulari- 
ties  smaller  than  usually  considered  acceptable.  Nose  blunting,  as  must  be 
incorporated on  a practical  vehicle,  or a small  keel,  as  used  in  reference 16, 
should  alleviate  this  problem. 
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Typical 25% strake  data  are shown in  figure 27. The  comparison with 
theory is somewhat  similar to that  for  the 10% strakes  in  that good correlation 
is found at   s ina/ tan6 = 1.59, whereas  pressures  well  below  the  theoretical 
values  are found on the  upper  body  surface  for  sincy/tan 6 = 3. 15. Excellent 
agreement is found  on the  lower  surfaces  for  these  cases.  Asymetries at 
s ina/ tan6 = 5.37  again  compromise  the  comparison  with  theory  at  large cy. 

The 7570 strake  pressure  data  are  summarized  in  f igure 28. Excellent 
agreement  with  theory  is found f o r  sin  @/tan 6 = 1.7. The  data  for 
sincy/tan 6 = 2.8  and 3 . 8  show a good correlation  with  theory on the  lower 
surfaces and also on the  upper body surface,  an  indication  that no body vor- 
t ices   are   present .   Pressures   wel l  below  the  theory  were  measured on the 
upper  strake  surfaces  at  sina/tan 6 = 2.8  and  3.8. A similar  disagreement 
was found by  Smith  (ref. 11)  and  Hurnrnel (ref. 17) f o r  flat  delta wings  and  was 
attributed to boundary  layer  separation with the  formation of secondary and 
tertiary  vortices  near  the wing tips. 

CONCLUSIONS 

A nonlinear  theory  has  been  developed f o r  the lift and pressure  distribu- 
tion on conical  body-strake  configurations.  The  theory  was  evaluated  by  com- 
paring  with wind tunnel  force  and  pressure  data.  The following results  are 
noted: 

( 1 )  Both  theory  and  experiment  show  that  very  large  increases  in l i f t  
may  be  obtained  at a given  angle of attack,  even with  the  smallest 
strake  size  considered, v i z . ,  10% of the body radius. 

(2) Good correlation  between  theory and experiment  was  obtained f o r  
lift over  the  complete  angle of attack  range,  except  for  the 
10%  and 2570 strake  configurations  in  the  range 2 5  sin cy/tan 6 5 4. 
The  nonagreement  for  these  cases  is  believed  caused by a second 
pair of spiral  vortex  sheets which originate on the  upper body sur -  
face, and  which a r e  not included  in  the  theoretical  model. 

(3) Improvement of the  theory  to  account  for  the body vortices  requires 
additional  experimental  verification of their  formation  and  deter- 
mination of the body separation  point. 

Air  Vehicle  Corporation 
La Jolla,  California 

February 6, 1968 
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APPENDIX A 

GENERAUZED CONFORMAL TRANSFORMATIONS 

The  transformation 

2 
z* = [ b ( Z 2 - ( b  - a2))l!aZ - i (b-a) qoj l 2  - so 2 

&-a) 

maps  the  contour of strake-body  combinations of circular  or  elliptical body 
cross-section  in  the  physical Z-plane into a vertical slit along  the  imaginary 
axis  in  the  auxiliary Z*-plane  (figs. 3 and 4). Here eo and ?lo a r e  

defined a s  

1/4 
b (A2 + B2)  sin * - a sin p 

2 

with 

A = COS 2p - (b - a ), B = sin 2p, and 9 = tan - 2 2  -1 B 
A '  

where a i s  the  radius of minor body axis, b is  the  radius of major body 
axis, and p is  the  angle  between  the  line  joining  the  strake  tip with the body 
axis and the y axis. It is noted  that  the  strakes  in  the  physical  Z-plane  are 
slightly  curved, as shown in  figure  4, and that  the y distance  between  strake 
tips i s  2 cos p. 

By  expanding  equation  (A  1) in   t e rms  of b-a  and  taking  the limit 
(b-a)+O, it can  readily  be  seen  that  equation (A 1) reduces  to  the  correspond- 
ing  transformation  for  circular  cross-sections,  which is 

with 
2 2 eo = ( 1  - a ) COS p, = (1 t a ) sin p. 
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Taking a = 1 gives a circular  cone with vanishingly  small  strakes  at  arbi- 
t ra ry  p. Taking a = p = 0 gives a flat  triangular wing with no body. 

The  source  term f o r  elliptical  cross-sections is derived by  applying 
equation (A 1) to a well-known  source  term  for  circular  cross-sections, 
and i s  

dW / d Z  

U tan 6 
s - a b  - 

2 1/  2 
[ Z 2  - (b2 - a ) ]  
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APPENDIX B 

BROWN AND MICHAEL THEORY 

The  simplified  Brown  and  Michael  model,  in which the  coiled  vortex 
sheet and isolated  vortex  are  replaced by a single  pair of concentrated  vor- 
tices, is a limiting  case of the MS theory when  n = 0. In  the  present  paper 
use is made of the BM limit t o  investigate  the  general  variation of l i f t  coeffi- 
cient  as a function of angle of attack,  primarily  for  configurations  with  small 
strakes,   for which some  difficulty  was  encountered  in  the MS approach. It is 
recognized,  as  indicated  in  the  Introduction,  that  the l i f t  values  and  lateral 
vortex  position  obtained  from  the BM theory  are  too  large.  Nevertheless, 
these  simple  calculations  serve  as a  guide for  establishing  the  overall  shape 
of the CL vs. CY curve when the  number of MS calculations  is  insufficient. 

A brief  review of the BM theory  follows. 

The BM formulation  is  similar  to  the MS theory  already  discussed, 
except  that it i s  no longer  necessary  to  satisfy boundaryconditions. on the  sheet. 
What remains  is t o  solve  the  two-dimensional  Laplace  equation  in  the  cross - 
flow plane  subject t o  the  boundary  conditions of zero  normal  velocity on the 
surface of the body  and strakes,  the Kutta  condition  at  the  tips of the  strakes, 
and the  force  balance  condition on the  vortex and  cut. 

Equation ( 3 )  f o r  the  complex  potential  in  the  Z*-plane now reduces t o  

i rv 9; 
W E U C Y Z  - -  In 

* 2Tr 

which has two unknowns, the  position of the  isolated  vortex Z and i ts  
* 
V 

! strength . They  may  be  determined  from  the  Kutta  condition  and  the  zero 
V 

force  condition  which  are,  respectively, 

and 

where  is  the  conjugate of the Z coordinate of the  strake tip. t 
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The  procedure t h a t  was  followed  was  to  eliminate P/  tan 6 between 
equations (B 2) and (B 3) and  gave the following  express'ion  for gv. 

zz- gv-l  dW /dZ 

U tan 6 
S - 2 zv + Zt 

z* t z* 1 dZ 
V 

Equation (B 4) was  solved  by  fixing  the z coordinate of the  vortex, and vary- 
ing  the y coordinate until gv became  real.  This  was  carried out  on the 

CDC-3600 computer  in  complex  arithmetic.  After gv was  obtained,  the 

corresponding cr/tan 6 was  computed  from  equation (B 2). 
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TABLE I 

EFFECT  OF NUMBER O F  VORTEX SHEET SEGMENTS 

Flat Plate Lift and  Isolated  Vortex 
Characteristics, a/ 6 = 0. 91 

N u m b e r  of Vortex 
Sheet Segments gV YV 

0 (Linear)  5.7 "- "" 

0 Brown  and 
Michael  (ref.  3) 

1 Mangler  and 
Smith  (ref. 10) 

11.2  4.4 0.87 

9 .1  3.1 0.80 

1 0 . 1  

1 0 . 1  

3. 2 0.78 

3.  3 0.74 

14  Smith (ref. 11) 
* 

9 .9  3.2  0.72 

Lift and  Isolated  Vortex  Characteristics 
Circular  Cone, 7570 Strakes, CY/ 6 = 2 .  8 

0 Linear  13.7 "" "" 

:i 

ii 0 Brown  and  Michael 
(Appendix  B) 46. 0 17. 0 0.93 

6 Present  Calculation 39. 6 12.2 0. 8 2  

20 Present  Calculation  39.7 8. 8 0.81 

* 
* *  

z 
V 

"" 

0.22 

0. 17 

0.21 

0.22 

0.22 

"" 

0.50 

0.51 

0.52 

:K 
Computed  with On = 157O 

* *  e = 517O n 
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Body Shape 

Fla t  Plate 

Circle 

TABLE II 

SUMMARY O F  WING-BODY CALCULATIONS 

Strake  Size  Dihedral 
* 

O0 

- l o o ,  oo, l o o  

- l o o ,  oo, l o o  

-loo, oo, l o o  

-20 0 

- l o o ,  oo, l o o  
- loo ,  oo, l o o  

40°, 44O, 47' 

50°, 53O, 56O 

O0 

O0 

O0 

O0 

O0 

O 0  

O0 

O0 

O0 

O0 

4 6  

0.3-8.0 

0.3-8. 0 

0.3-8. 0 

0. 3-8. 0 

5.5-8. 0 

0.3-8. 0 

0.3-8. 0 

2.8-8. 0 

2.8-8. 0 

0. 3-8. 0 

0. 3-8.0 

0.3-8. 0 

4. 0-8. 0 

4.0-8.0 

0.3-8. 0 

0. 3-8.0 

0. 3-8. 0 

0.3-8.0 

0. 3-8.0 

* 
Exposed  strake semi span  in 70 of semi major body axis. 
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t 
Spiral vortex sheet 

Variables 
in plane 
x =const:-/ 

\ 

Figure 1. - Conical  body-strake  configuration. 
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10 

t v tana  

Vortex  sheet shown for 10% strakes, 
circular body, p = -IOo, and tan a / tan  6 = 5 

Figure 2. - Six-segment  vortex  sheet  model,  physical  cross-flow  plane. 
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Top of body \ 

Vortex  sheet shown for  10% strakes,  
circular body, ,g =-IOo, and t a n  a / t a n 8 = 5  

Figure 3.  - Six-segment  vortex  sheet  model,  transformed-plane. 
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S -plane 

Z- plane 
* 
J 

Figure 4. Conformal  mapping  planes. 
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200 

I60 

(20  

80 

40 

0 

L a/ b 

0.60 
0.75 
1.00 

0 
0.60 
0.75 
I . 00 

0 0.5 I .o 
a / 6 -  

Calculated using 
extended  Mangler 
and Smith  theory 

0.60 7 "- Linear  theory 

2 4 
(a) Lift. 

Figure 5. - Calculations  for con-es  with 5070 strakes,  zero  dihedral. 
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I .2 

I .o 

0.8 

t 
z 

0.6 

0.4 

0.2 

0 

a / b =  I I 

I y- 

(b) Isolated  vortex position. 

Figure 5. - Concluded. 

3 

36 



P 
+ IO0 
00 

O0 

- 4 
0 > 
. . . . . . . . . . . . . 

"- 

0 . 5  I .o 
a /  6- 

t 
P 

Est imated 

Calculated using 
extended Mangler 
and Smith  theory 

Interpolated 

Linear theory 

2 4 6 

(a) Lift. Q/8- 

Figure 6. - Calculations  for cones with 25% strakes. 
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I .4 

I .2 

t 1.c 
z 

0.8 

0.6 

0.4 

0.2 

0.2  0.4 0.6 

6 

4 

O! 8 1.0 
Y- 

(b) Isolated  vortex  position. 

Figure 6. - Concluded. 
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8 (  
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3 -  

3 -  

1 
0 I 
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.......................... 

l 
2 4 6 

(a)  Lift. a / 8  __t 

Figur.e 7. - Calculations  for  cones  with 10% strakes.  
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Figure 7 .  - Concluded. 
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20 

16 

12 

8 

4 

t 
C p  2 

Calculated using 
extended  Mangler 
and Smith  theory 

................... Interpolated 

"- Calculated  using Brown 
and  Michael  theory 

)pendix 9 )  - 

0 2 4 6 a / 8 -  8 

Figure 8. - Comparison  with  Brown  and  Michael  theory, 
zero  dihedral,  circular body. 
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N 

Side view 

1 ;  

38.4" 
3 3.6'' d 

* - 30.2" 

. - .  

Pressure orfices shown 
on upper surface only 

I 
Rear view 

.Q3" . surface 

Stroke  bevel  detail 
(Typical 1 

Figure  9. - Wind tunnel  pressure  model, 7570 strakes. 



Ell iptical cone ( a / b  =0.6) IO%strakes, a = 16" 

Elliptical cone ( a   / b = 0 . 6 )   5 0 % s t r a k e s ,  a = 28" 

Figure 10. - Typical  model  installations. 
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Body 8 4 Comments 
no. ~ d e q  -psf 

a 2  
d 3  6 . 0  75 

d 3  6.0 100 

A 4  8.0 50 

A 4  8.0 75 
4) 5 10.0 50 Pitch with tare correction 

e 5  10.0 7 5  

~ 

4.0 75 Yaw + sting extension 
I 1  11 I) 

I 1  I 1  I 1  

I 1  I 1  I 1  

I 1  I 1  I 1  

I 1  I 1  II I 1  

( Ass urn ed 
a n g l e  o 

40 

S 

n body 
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20c 

160 

I20 

80 

4c 

d 

Body 
n 0. 

a 2 
0 2 

A 4 
M 4 

3 3 3 

6 q 
-deg  -psf 

Comments 

4.4 7 5  Y,QW + sfling exfmsion 
4.4 100 
6.6 7 5  
6.6 100 
0.8 50 
8.0 7 5  

m1 I 1  I 1  

I 1  I 1  I ,  

I 1  I 1  II 

I1  I 1  II 

0 5 11.0 50  
0 5 11.0 75 I1  II 

qftch with tare  corTfction 

" 1 

4 
I 

6 
I 

8 
Sin u / tan8- 

Figure 12. - Comparison of l i f t  data  with  theory, 
circular cone, 10% strakes. 
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Body 8 
no. A e g  m&f 

Comments 

d 2  
6 2  
d 3  
d 3  

t 2401"  
C, / tan 6cos  a ' 2 2  

L 

3 -  

3 -  

D -  

3 -  

3 -  

I 

5.0 
5.0 100 

7s Yaw+sting  extension 
11 II I 1  

7.5 
. " 

75 I 1  I 1  I 1  

7.5 I o 0  
IO. 0 50  

I 1  H I I  

I 1  II I1 

10.0 75 I 1  I 1  li 

t 
............. interpolated 

Theoretical body vortex 
increment added for 

Sina/  tan 6 - 
Figure 13.  - Comparison o f   l i f t  data with theory, 

circular  cone, 25% strakes.  
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Body 8 9 Comments 
no. deg psf  ~ “ ~ I I . .  

a 2  
a d 3 

3 

A 4 
A 4 

C /tan 8 cos a 2 2 
L 

200 

I60 

120 

80 

40 

O4 

6.0  75 Yaw + stina extension . ~” - 
3 3  75 

50 y a w  
12.0 50 
12.0 75 

Pitch with tare  correction 
II I 1  II 

2 4 6 
Sin a / t a n 8  - 

Figure 14. - Comparison of l i f t  data  with  theory, 
circular  cone, 5070 strakes. 
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t 
cL’ 

48 

Body 8 9 Comments 
no. Ndeg *psf 

.~ . ~~ 

a 2  7.0 75  Yaw-csting  extension 
E l 3  10.5 50 Yaw 

d 3  10.5 7 5  
A 4  14.0 5 0  Pitch with  tare correction 

II 

c ( 4  1 4.0 75 )I I 1  I 1   I 1  

60 - 

Nonlinear theory 

0 I 2 3 4 
S i n a  / tan8 

Figure 15. - Comparison of l i f t  data  with  theory, 
circular  cone, 75% strakes. 



d 2  8.0 7 5  Yaw+sting extension 
a 3  12.0 5 0  Ya w 

d 3  12.0 75  
A 4  16.0 5 0  P i t c h  with fare correct ion 
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Figure 16. - Comparison of l i f t  data  with theory, 
circular  cone, 100% strakes. 
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Figure 17.- Formation of body vortices on  a cone  with  small  strakes. 
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Figure 18. - Calculated  regions of adverse  pressure  gradient. 
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Figure 19. Lift gain  with small   strakes on circular  cones. 
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Figure 20. Comparison of l i f t  data  with  theory 
a/b = 0. 6 elliptical  cone, 10% strakes. 
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Figure 21. Comparison of l i f t  data  with  theory 
a/b = 0. 6 elliptical  cone, 25% strakes. 
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Figure 22. Comparison of l i f t  data with theory 
a /b  = 0. 6 elliptical  cone, 507; strakes. 
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Figure 24. - Axial  pressure  distribution  along Y = 0 ,  

circular  cone  with 25% strakes.  
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Figure 2 6 .  - Spanwise pressure  distribution, 
circular  cone with 10% st rakes* 
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Figure 27. - Spanwise  pressure  distribution, 
circular  cone  with 2570 strakes.  
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Figure 28. - Spanwise pressure  distribution, 
circular cone with 75‘70 strakes. 
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